CARTER RUN, GREAT RUN, THUMB RUN, AND DEEP RUN
TMDL IMPLEMENTATION PLAN DEVELOPMENT

Virginia Department of Conservation and Recreation
Rappahannock-Rapidan Regional Commission
Engineering Concepts, Inc.

STEERING COMMITTEE MEETING
August 2, 2005

DEVELOPMENT TASKS
- Stakeholder involvement
 - Public meetings
 - Working groups – agricultural, governmental, and residential
 - Steering committee
- TMDL review and needs analysis
- Implementation actions
 - Identification & quantification
 - Agricultural
 - Residential
 - Cost / benefit analysis
 - Agricultural
 - Residential
- Establish milestones and create timeline
- Develop tracking and monitoring plans

REVIEW OF TMDL DEVELOPMENT
- Impairment description
- Watershed characteristics
- Water quality monitoring
- Water quality modeling performed
- Sources considered
- Allocations specified

AGRICULTURAL BMPS
- Data layers
 - Watershed boundaries – TMDL reports
 - Streams – USGS National Hydrology Dataset
 - Aerial photography - Virginia Geographic Information Network
 - Confined animal feeding operations - DCR
 - Existing best management practices – DCR
 - Farm tracts - Farm Service Agency
 - Parcels – Fauquier County

SEPARATING BMP TYPES
- Types
 - Direct deposition
 - Land-based
 - Thumb Run and Deep Run
 - Partitioned bacteria loadings
 - Direct loading from livestock and horses
 - Land-based loadings to pasture and cropland
 - Carter Run and Great Run
 - No source partitioning
 - Bacteria source assessment spreadsheet developed by the Biological Systems Engineering Department at Virginia Tech
 - Populations and distribution factors entered into spreadsheet
 - Spreadsheet output describing directly deposited loads will be subtracted from the TMDL-prescribed reductions, applying the identified reduction percentage and considering die-off
 - Balance of load allocation will be assumed to originate from land-based loads for each source

STREAM EXCLUSION SYSTEMS
- Clip data layers to subwatershed
- Tag stream layer for continuous and intermittent streams
- Create 35' buffer around continuous streams
- Join buffer and land use layers
- Intersect buffer/land use layer with streams
- Overlay buffer/land use stream layer on orthophotography layer
- Overlay existing BMPs and CAFO layers
- Update stream layer
- Overlay updated stream layer on FSA tract data
- Determine average characteristics of BMPs installed in region
- Translate stream fencing to exclusion systems
PRELIMINARY STREAMSIDE FENCING SUMMARY

<table>
<thead>
<tr>
<th>Impairment</th>
<th>Continuous Stream Length (miles)</th>
<th>Stream Through Pasture (miles)</th>
<th>Potential Livestock Exclusion Fencing Needed (miles)</th>
<th>Current Livestock Exclusion Fencing Needed (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thumb Run</td>
<td>28.9</td>
<td>17.4</td>
<td>27.8</td>
<td>24.3</td>
</tr>
<tr>
<td>Carter Run</td>
<td>48.8</td>
<td>15.5</td>
<td>23.4</td>
<td>23.4</td>
</tr>
<tr>
<td>Great Run</td>
<td>23.9</td>
<td>12.6</td>
<td>19.7</td>
<td>19.7</td>
</tr>
<tr>
<td>Deep Run</td>
<td>26.4</td>
<td>3.1</td>
<td>4.3</td>
<td>4.3</td>
</tr>
</tbody>
</table>

LAND-BASED AGRICULTURAL BMPS

- Calculate land-based reductions resulting from exclusion buffers installed
- Identify additional BMPs with associated efficiency
- Summarize acreage per FSA tract needing treatment
- Divide tract acreage by acres treated per BMP to determine number and type of BMP
RESIDENTIAL BMPS

- Number of corrective actions listed in TMDL report
 - Straight pipes
 - Failing septic systems
- BMP scenarios
 - Identification through septic tank pump-outs
 - Corrective options
 - Minor repairs
 - Replace with traditional septic system
 - Replace with alternative septic system

NEXT STEPS

- Second steering committee meeting
 - Translate streamside fencing into exclusion systems
 - Land-based agricultural BMP analysis
 - Verify BMP quantification results with agencies and agricultural working group
 - Residential BMP scenarios
 - Calculate technical assistance and education needed
- Third steering committee meeting
 - Cost analysis
 - Establish milestones and create timeline
 - Develop tracking and monitoring plans
 - Further analysis to aid implementation